Exercise 1.3.3 Let $X,Y$ be sets such that there is a map from X onto Y . Show that $Y\leq_c X$.
Proof:Let this onto map from $X$ to $Y$ be $f$.For any fixed $y\in Y$,Let $y^{set}$ be \begin{align*} y^{set}:\{x\in X|f(x)=y\} \end{align*}It is easy to verify that for $y_1,y_2\in Y$,$y_1\neq y_2$,\begin{equation}\label{eq:1} y_1^{set}\bigcap y_2^{set}=\emptyset\end{equation}And\begin{align*} \bigcup y^{set}_{y\in Y}=X\end{align*}Then by the axiom of choice,there is a choice function from $Y$ to $\bigcup y_{y\in Y}^{set}$.And according to \ref{eq:1},this choice function is one-to-one.Done.